³¹P N.M.R. Evidence for a Di-*hapto*-bonded *Tetrahedro*-tetraphosphorus Ligand in $[Rh(P_4)(PPh_3)_2CI]$

W. Edward Lindsell

Chemistry Department, Heriot-Watt University, Riccarton, Currie, Edinburgh EH14 4AS, U.K.

³¹P{¹H} N.m.r. spectroscopic investigations of [Rh(P₄)(PPh₃)₂Cl] establish the presence of an η^2 -P₄ ligand.

The complexes $[M(P_4)(EAr_3)_2X]$ (1) (M = Rh, E = P, Ar = Ph, X = Cl; M = Ir, E = P, Ar = Ph, X = Cl) prepared Ph, m- or p-tolyl, X = Cl, Br, I; M = Rh, E = As, Ar = from white phosphorus have been described¹ and were the

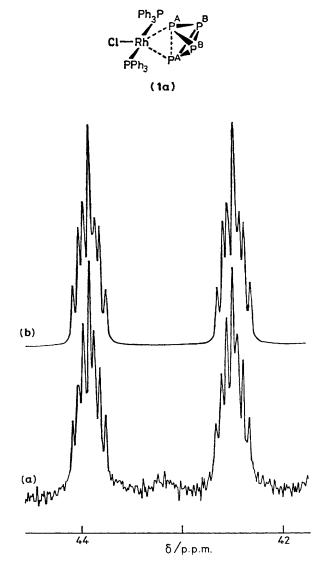
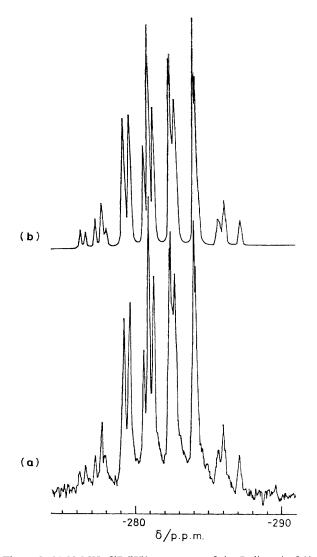



Figure 1. 81.02 MHz ³¹P {¹H} resonance of the PPh₃ groups of (1a) in CD₂Cl₂ -22 °C: (a), experimental spectrum (line narrowed), (b), simulated spectrum (PANIC); δ 43.2 p.p.m.; ¹J (Rh–P) 115.3; ²J (P–P^A) 4.7; ³J (P–P^B) 8.6 Hz; linewidth = 2 Hz.

first examples of species containing the tetraphosphorus ligand. More recently, insoluble P_4 complexes $[M\{N(CH_2CH_2-PPh_2)_3\}(P_4)]$ (M = Ni, Pd),^{2,3} with a tripod-phosphine ligand, have been reported and X-ray analysis has shown the presence of a simple mono-*hapto* η^1 -P₄ ligand. The only other known complex in which a P₄ unit may be present is $[Fe_3(CO)_{12}(P_4)]$,⁴ but the mode of iron-phosphorus bonding has not been definitively established.

$$[M(P_4)(EAr_3)_2X] [Rh{(Ph_2PCH_2)_3CMe}(\eta^3-P_3)]$$
(1)
(2)

a; M = Rh, E = P,
Ar = Ph, X = Cl

The nature of the M-P₄ bond in the monomeric complexes (1) has not been determined though various possibilities of η^{1} , η^{2} , or η^{3} -interactions have been considered.¹ As yet, stable crystals of these complexes, suitable for X-ray analysis, have not been obtained but now low temperature ³¹P {¹H}

Figure 2. 81.02 MHz ³¹P {¹H} resonance of the P₄ ligand of (1a) in CD₂Cl₂, $-22 \,^{\circ}$ C: (a), experimental spectrum, (b), simulated spectrum, A₂B₂ system (PANIC); $\delta(P^A) - 279.4$; $\delta(P^B) - 284.0$ p.p.m.; ¹J(P^A-P^B) 175; ¹J (Ph-P^A) 33.9; ²J (Rh-P^B) 0; J (P^A-PPh₃) 4.7; J (P^B-PPh₃) 8.6 Hz; linewidth = 7 Hz.

n.m.r. studies of $[Rh(P_4)(PPh_3)_2Cl]$ (1a) have provided structural information.

The ³¹P {¹H } n.m.r. spectrum of (1a) in CD_2Cl_2 solution (under N₂ or *in vacuo*) comprises two sets of resonances: one (δ + 43.2 p.p.m., -22 °C)† attributable to two equivalent PPh₃ groups (Figure 1) and the other, a second order multiplet at high field assigned to the P₄ group (Figure 2). The basic patterns of these resonances at 81.02 MHz are unchanged in the temperature range -70 to +40 °C (although minor changes in chemical shifts do occur). There is no evidence for fluxionality in this temperature range but at higher temperatures (> -10 °C), decomposition occurs, slowly on the n.m.r. time scale, and the intensity of the signals decreases.

Analysis shows that the high field multiplet arises from the P_4 unit acting as an A_2B_2 spin system with additional coupling to ¹⁰³Rh and the ³¹P atoms of equivalent PPh₃ ligands (see

 $[\]dagger$ Positive chemical shifts are to low field of external 85% $H_3PO_4.$

Figure 2 for parameters). Similar reciprocal analysis may be made for the ${}^{31}P{}^{1}H$ resonance of the PPh₃ groups (Figure 1). This interpretation of the spectrum has been confirmed using both 81.02 and 145.8 MHz spectrometers.

The evidence supports the structure shown for (1a). The chemical shifts for atoms P^{A} and P^{B} are comparable to that of the η^3 -P₃ ligand in the previously described $[Rh \{(Ph_2PCH_2)_3CMe \}(\eta^3-P_3)]^5$ (2) which has ${}^{31}P \{{}^{1}H \}$ parameters for η^{3} -P₃ [δ -270.8 p.p.m., dq, ¹J (Rh-P) 28.2; ²J (P-P) 12.2 Hz in $CDCl_3$ -CH₂Cl₂ (1:1)]. Also the ¹J (Rh-P^A) value for η^2 -P₄ (1a) is small in comparison with normal Rh-P coupling constants in phosphine complexes⁶ but comparable to the value in (2). The fact that ${}^{2}J$ (Rh-P^B) = 0 $(\pm < ca. 1 \text{ Hz})$ supports no direct bonding between Rh and the two atoms P^{B} of the P_{4} unit. The ¹J (Rh–P) coupling for PPh₃ ligands is slightly smaller than in some related rhodium(1)⁶ complexes {e.g., [RhL(PPh₃)₂Cl], L = CO, C₂H₄, PPh_{α} ³⁷ but greater than values for rhodium(III)⁶ species $\{e.g., [RhH(CO)(PPh_3)_2Cl_2] \text{ and } trans-[Rh(COR)(PPh_3)_2X_2]\}$ This raises the question of the oxidation state of Rh in (1a) and the oxidative-addition nature of the bonding of η^2 -P₄. The order of coupling constants $J (P^{A}-PPh_{3}) < J (P^{B}-PPh_{3})$ may reflect some 'through-space' interaction between P^B and the PPh₃ ligands.

At temperatures > -10 °C, the yellow solution in CD₂Cl₂ of (1a) turns dark brown; initially a singlet ³¹P {¹H} n.m.r. resonance appears at ± 26.0 p.p.m. but this is followed by a resonance assignable to free PPh₃, increasing in intensity, plus a broad resonance (*ca.* ± 30 p.p.m.). There is a decomposition product (a brown solid) of unknown nature. I thank the S.E.R.C. for support of this work, Dr. A. P. Ginsberg for helpful correspondence, Dr. I. H. Sadler for running the 145.8 MHz spectra, and Mr. W. P. Nethercote for some experimental assistance.

Received, 28th September 1982; Com. 1146

References

- A. P. Ginsberg and W. E. Lindsell, J. Am. Chem. Soc., 1971, 93, 2082; A. P. Ginsberg, W. E. Lindsell, and W. E. Silverthorn, Trans. N.Y. Acad. Sci., 1971, 33, 303.
- 2 P. Dapporto, S. Midollini, and L. Sacconi, Angew. Chem., Int. Ed. Engl., 1979, 18, 469; P. Dapporto, L. Sacconi, P. Stoppioni, and F. Zanobini, Inorg. Chem., 1981, 20, 3834.
- 3 M. DiVaira and L. Sacconi, Angew. Chem., Int. Ed. Engl., 1982, 21, 330.
- 4 G. Schmid and H. P. Kempny, Z. Anorg. Allg. Chem., 1977, 432, 160.
- 5 C. Bianchini, C. Mealli, A. Meli, and L. Sacconi, *Inorg. Chim.* Acta, 1979, **37**, L543.
- 6 Cf. P. S. Pregosin and R. W. Kunz '³¹P and ¹³C N.m.r. of Transition Metal Phosphine Complexes' in 'N.m.r. Basic Principles and Progress,' Vol. 16, eds. P. Diehl, E. Fluck, and R. Kosfeld, Springer-Verlag, Berlin, 1979.
- 7 T. H. Brown and P. J. Green, J. Am. Chem. Soc., 1970, 92, 2359; C. A. Tolman, P. R. Meakin, D. L. Lindner, and P. J. Jesson, *ibid.*, 1974, 96, 2762.
- 8 D. L. Egglestone, M. C. Baird, C. J. L. Lock, and G. Turner, J. Chem. Soc., Dalton Trans., 1977, 1576; D. A. Slack, D. L. Egglestone, and M. C. Baird, J. Organomet. Chem., 1978, 146, 71; K. S. Y. Lau, Y. Becker, F. Huang, N. Baenziger, and J. K. Stille J. Am. Chem. Soc., 1977, 99, 5664.